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Abstract. The spatial distribution of field-scale geochemical parameters,

such as extractable Fe(II) and Fe(III), influences microbial processes and thus

the efficacy of bioremediation. Because traditional characterization of those

parameters is invasive and laborious, it is rarely performed sufficiently at the

field-scale. Since both geochemical and geophysical parameters often corre-

late to some common physical properties (such as lithofacies), we investigated

the utility of tomographic radar attenuation data for improving estimation

of geochemical parameters using a Markov Chain Monte Carlo (MCMC) ap-

proach. The data used in this study included physical, geophysical, and geo-

chemical measurements collected in and between several boreholes at the DOE

South Oyster Bacterial Transport Site in Virginia. Results show that geo-

physical data, constrained by physical data, provided field-scale information

about extractable Fe(II) and Fe(III) in a minimally invasive manner and with

a resolution unparalleled by other geochemical characterization methods. This

study presents our estimation framework for estimating Fe(II) and Fe(III),

and its application to a specific site. Our hypothesis—that geochemical pa-

rameters and geophysical attributes can be linked through their mutual de-

pendence on physical properties—should be applicable for estimating other

geochemical parameters at other sites.
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1. Introduction

Field-scale bacterial transport in the subsurface plays an important role in the protection

of groundwater supplies from contamination by pathogens and in the bioremediation of

various metal and radionuclide contaminants [Chapelle, 2001]. Many studies have shown

that both in situ physical and chemical heterogeneity control by diverse mechanisms field-

scale bacterial movements in saturated aquifers [DeFlaun et al., 2001; Chen et al., 2002].

For those bacteria with low or neutral surface charges, the adhesion of bacteria to sediment

is primarily determined by physical heterogeneity, specifically by grain size and pore-throat

size distributions [Dong et al., 2002]. However, for those bacterial strains bearing high

negative surface charges and traveling through the heterogeneous subsurface, chemical

heterogeneity becomes important because of electrostatic interactions. For example, in

slightly acidic groundwater, quartz grains have negative charges and metal oxyhydroxides

have positive charges, and thus bacterial strains with negative charges will be repelled by

quartz grains that lack metal oxyhydroxide coatings, but will be attracted to the surfaces

of quartz grains that are dominated by metal oxyhydroxides.

In aquifers containing Fe(III) oxides, the activity of dissimilatory iron-reducing bacte-

ria (DIRB) has the potential to influence bacterial transport processes [Caccavo et al.,

1997]. The adsorption or precipitation of Fe(II) produced by Fe(III) reduction on Fe(III)

oxides and on the surface of DIRB may reduce the adhesion of DIRB to sediment grains

by reducing the bio-accessible Fe(III) surface areas. Fe(III) oxide reduction could also

locally increase the pH of groundwater and thereby promote the desorption of DIRB by
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reducing the positive surface charges of the metal oxyhydroxide minerals. In addition, the

desorption of daughter cells could increase net transport rates [Roden et al., 2000].

Despite the importance of field-scale physical and geochemical heterogeneity for micro-

bial processes, characterization of physical and geochemical parameters remains a daunt-

ing task. Traditional methods for characterizing those parameters, such as laboratory

measurements of cores collected from boreholes, are invasive and laborious, and thus

are rarely performed sufficiently at the field-scale. In addition, core data are point-scale

measurements, which are usually insufficient for characterizing variability at the field-

scale where bioremediation occurs. In our previous study, we have successfully estimated

the high-resolution spatial distribution of field-scale hydraulic conductivity at the DOE

South Oyster Bacterial Transport Site in Virginia using geophysical data [Chen et al.,

2001; Hubbard et al., 2001]. Comparison of field tracer experiment measurements and nu-

merical modeling predictions, based on geophysically obtained estimates, suggested that

the estimated hydraulic conductivity values provided information at a scale and resolution

that greatly improved the prediction of field-scale solute transport [Scheibe and Chien,

2003] and helped to improve our understanding of bacterial transport and attachment

[Mailloux et al., 2003].

Motivated by the successful estimation of hydrogeological properties using geophysical

data, we explore the use of the same noninvasive and cost-effective approach for char-

acterization of geochemical heterogeneity, using data collected from the South Oyster

site. To our knowledge, this is the first effort to estimate field-scale geochemical param-

eters using geophysical data. We focus on estimation of solid-phase Fe(II) and Fe(III)

concentrations along a two-dimensional cross section by exploiting the site-specific mu-
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tual dependence of crosshole radar attenuation and Fe(II) and Fe(III) concentrations on

lithofacies. The geochemical parameters are known at the borehole locations, but are

unknown between the boreholes. The two-dimensional spatial distributions of Fe(II) and

Fe(III) concentrations are estimated from tomographic radar attenuation data using a

Markov Chain Monte Carlo (MCMC) approach. These estimates should provide useful

information for predicting field-scale microbial Fe(III) oxide reduction potential, and for

understanding the field-scale bacterial transport experiments carried out at the South

Oyster Focus Area [Murray et al., 2001]. The approach developed should also be useful

for estimating geochemical parameters at other locations where site-specific relationships

between geophysical, physical, and geochemical parameters can be exploited.

The remainder of this paper is organized as follows. Section 2 describes site information

and available data, and Section 3 describes the development of the statistical estimation

method. Estimation results and cross-validation of the method are given in Section 4.

2. Site Information and Data

2.1. Site Information

The South Oyster site is located on the southern Delmarva Peninsula, which is situated

on the eastern coast of the United States between Chesapeake Bay and the Atlantic Ocean.

The surficial unconfined aquifer underlying the study area consists of unconsolidated to

weakly cemented, well-sorted, medium- to fine-grained sands and pebbly sands, with the

water table located ∼2 m below the ground surface. A field-scale experiment within the

uncontaminated aquifer at the site was undertaken by a multidisciplinary research team

to evaluate the importance of chemical and physical heterogeneity in controlling bacteria

transport at the site [DeFlaun et al., 2001; Johnson et al., 2001]. Two focus areas exist
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within the South Oyster Site: the Narrow Channel Focus Area and the South Oyster

Focus Area (SOFA). Forced gradient chemical and bacterial tracer test experiments were

performed at both focus areas.

This study focuses on data collected within a saturated aquifer at a site located ∼15

m along the geological strike from the SOFA transport site (Figure 1). Our goal was

to investigate the spatial heterogeneity of geochemical parameters as an analogue to the

immediately adjacent SOFA site. The available data included laboratory measurements

of physical, geological, and geochemical parameters from the cores retrieved from wells

D1, D2, and D3. The samples were taken between depths of 2.4 m and 8.7 m below

the ground surface, with a sampling interval of 0.15 m to 0.30 m [Johnson et al., 2001].

The data also included high-resolution ground-penetrating radar (GPR) and seismic to-

mograms acquired along the cross sections between wells D1-D2 and D2-D3 (Figure 1).

We performed multivariate data analysis for all the datasets and found lithofacies and

GPR attenuation to be most informative for estimating extractable Fe(II) and Fe(III). As

such, in the following, we describe only the lithofacies, GPR attenuation, and solid-phase

Fe(II) and Fe(III) data, and explore their cross correlations.

2.2. Data Analysis

2.2.1. Lithofacies

Borehole lithofacies categorization was performed for the study during the logging and

core-sampling process, based on the visual grain-size estimation using a comparator chart

and on the soil color and texture description. In the original data, four lithofacies cat-

egories were identified: peat, mud, muddy-sand, and sand. Based on cluster analysis of

physical properties, we reduced the classifications from four to two categories, by grouping
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peat and mud together, and referring to it as mud, and by grouping muddy-sand and sand

together, and referring to it as sand.

The spatial structure of lithofacies was investigated using variograms, which are defined

as the average squared difference of a quantity at two locations as a function of the

measurement separation distance [Rubin, 2003]. We performed variogram analysis along

the vertical direction by first computing the experimental variogram using the coded

lithofacies data (sand=1 and mud=0) collected from wells D1, D2, and D3, and then

fitting it using an exponential model with an integral scale of 0.5 m (Figure 2). Similarly,

we attempted to fit a model to the experimental variogram in the horizontal direction.

But with data from just three wells, no model could be reliably fit to the horizontal

variogram, due to the sparse sample density in that direction. In this study, however, we

assumed an anisotropy ratio of 5, borrowed from the nearby Narrow Channel Focus Area

[Hubbard et al., 2001], and used an integral scale of 2.5 m in the horizontal direction.

2.2.2. GPR Attenuation

GPR is a geophysical tool that has become increasingly popular as researchers across

a variety of disciplines strive to better understand near-surface conditions. GPR uses

electromagnetic energy at frequencies of 50–1500 MHz to probe the subsurface. At the

frequencies used and under the low-loss conditions, the electromagnetic signals propagate

primarily as waves, and the GPR attributes are functions of dielectric constant and electri-

cal conductivity of the medium [Davis and Annan, 1989]. Radar velocities are influenced

by the dielectric constant, which is sensitive to water content and porosity, and thus have

been used for mapping soil water content in unsaturated systems [Hubbard et al., 1997;

Binley and Beven, 2003] and hydraulic conductivity in saturated systems [Chen et al.,
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2001; Hubbard et al., 2001]. Radar amplitudes (or attenuation), however, are influenced

by both the dielectric constant and the electric conductivity of the medium [Davis and

Annan, 1989]. In saturated aquifers, such as the one considered here, radar attenuation

usually is dominated by electrical conductivity, and high electrical conductivity often leads

to high radar attenuation. Because fine-grained soils (such as clay and silt) typically have

much higher electrical conductivity (2–1000 mS/m for clay and 1–100 mS/m for silt) than

that of coarse-grained soils such as sand (0.1–1 mS/m), higher radar attenuation is often

associated with high clay content and silt fraction. Although the salinity of pore fluid may

also influence GPR attenuation, it does not appear to be correlated with GPR attenuation

in this study. Consequently, we hypothesize that both GPR attenuation and geochemical

parameters are predominantly influenced by lithology, and focus herein on the use of GPR

attenuation to estimate geochemical parameters by exploring the lithology link.

GPR tomographic data were collected along the cross sections between wells D1 and

D2 and between wells D2 and D3, using borehole antennas having a central frequency

of 100MHz. A typical crosshole tomographic geometry consists of two vertical boreholes

separated by an interwell region of interest. Direct energy from a transmitting antenna

in one borehole is recorded by the receiving antenna located in the other borehole. By

moving the transmitting and receiving antennas in the boreholes, many ray paths can be

recorded, which can be inverted to provide a tomographic image of the region between the

boreholes [Peterson et al., 1985]. The recorded data included the direct electromagnetic

wave travel time from the transmitter to the receiver passing through the crosshole region

and the amplitude of the direct arrivals. After dividing the interwell area into a grid of

pixels (0.25 m x 0.25 m), an inversion algorithm was used to transform the recorded travel
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time and amplitude information into estimates of the GPR velocity and attenuation at

each pixel, following Peterson [2001]. Figure 3(a) shows a contoured GPR attenuation

tomogram along the cross section between wells D1 and D3. GPR attenuation data

“overlap” with borehole data at or near the borehole locations. These collocated data

were used to develop site-specific relations between geophysical attributes and geochemical

parameters. The developed relationships were then used in conjunction with the GPR

tomographic data (Figure 3(a)) to extrapolate borehole geochemical measurements into

the interwell areas.

Figure 4 shows the relationship between the sand and mud lithofacies and the natural

logarithmic GPR attenuation. As expected from the previous discussions, the GPR am-

plitudes were more attenuated when passing through mud than through sand. Based on

data collected at the three wells, the mean logarithmic GPR attenuation of sand was -0.74

1/m with a standard deviation of 0.23 1/m, while the mean logarithmic GPR attenuation

of mud was -0.33 1/m with a standard deviation of 0.36 1/m.

2.2.3. Extractable Fe(II)

Extractable Fe(II) was measured by leaching triplicate 0.5–1.0 g subsamples, obtained

from each depth interval for wells D1, D2, and D3, with 0.5 M HCl for one hour. The

Fe(II) versus Fe(III) content of the extracts was determined using Ferrozine [Roden and

Lovely , 1993]. The exact nature of the Fe(II)-bearing phases leached by the 0.5 M HCl

is unknown, but may generally include Fe(II) from native iron-bearing minerals in the

formation (e.g., carbonates or silicates), as well as Fe(II) phases produced from bacterial

Fe(III) oxide reduction (e.g., siderite or Fe(II) sorbed to residual Fe(III) oxides or other

mineral surfaces).
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Figure 5 shows the histograms of the natural logarithmic extractable Fe(II) for sand

and mud, based on data collected at wells D1, D2, and D3. The figure suggests that the

distribution of logarithmic Fe(II) is symmetrical around the corresponding means for both

sand and mud. However, the logarithmic Fe(II) of sand has a much larger logarithmic

range (from -4 to 4) than that of mud (from 2 to 4). The logarithmic Fe(II) concentration

also depends on lithofacies; mud has much higher concentrations of extractable Fe(II)

than sand. The mean natural logarithmic Fe(II) of mud is 3.12 µmol/cc, with a standard

deviation of 0.58 µmol/cc, whereas the mean natural logarithmic Fe(II) of sand is only 0.25

µmol/cc, with a standard deviation of 1.66 µmol/cc. The logarithmic Fe(II) distribution

as a function of lithofacies is reasonable, because Fe(II) is usually sequestered in fine-grain

sediments such as silt and clay [Chapelle, 2001], and our mud lithofacies included both

silt and clay components.

As both logarithmic Fe(II) and logarithmic GPR attenuation display a correlation with

lithofacies, we have physical justification for investigating the link between Fe(II) and

GPR attenuation. The connection, however, may be affected by organic matter, grain

size, porosity, and other physical parameters. Figure 6 shows a cross-plot of logarithmic

Fe(II) versus logarithmic GPR attenuation based on data at wells D1, D2, and D3, where

the circles represent sand and the triangles represent mud. This figure reveals that for

both sand and mud, logarithmic Fe(II) linearly increases with increasing logarithmic GPR

attenuation. For mud, however, the increase is not as apparent as for sand.

2.2.4. Extractable Fe(III)

Extractable Fe(III), including amorphous and crystalline Fe(III) oxides, was determined

using a citrate-dithionite (CD) reagent (pH 4.8) [Canfield , 1989]. The 0.5 M HCl ex-
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tractable Fe(II) content of parallel sediment extracts (see above) was subtracted from

total CD extractable Fe to estimate Fe(III) abundance, as the CD reagent typically re-

covers the majority of solid-phase Fe(II) compounds.

Figure 7 shows the histograms of natural logarithmic Fe(III) for sand and mud. The

logarithmic Fe(III) of mud seems to be symmetric around its mean, and the logarithmic

Fe(III) of sand is slightly skewed towards the larger values. Although the mean values

of the logarithmic Fe(III) for sand (2.12 µmol/cc) and for mud (-0.60 µmol/cc) are quite

different, their ranges overlap considerably. In addition, the logarithmic Fe(III) has weak

linear correlations with both logarithmic GPR attenuation (R2 = 0.05) and logarithmic

Fe(II) (R2 = 0.15), but has a relatively good correlation with depth (R2 = 0.37).

3. Statistical Model

This section describes the statistical model for estimating the spatial distribution of

Fe(II) and Fe(III) concentrations along the cross section between wells D1 and D3. Within

the statistical framework, unknown Fe(II) and Fe(III) concentrations and lithofacies at

each location between the wells were considered as random variables, which are fully

characterized by the joint conditional probability function given GPR tomographic data

and borehole lithofacies logs. Estimation of those variables from the joint probability

function was obtained using an MCMC approach, which will be described in the next

section.

3.1. Model Setup

The developed statistical model is intended to meet conditions that are specific to our

study site, even though its underlying concept is quite general and can be applied to other
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sites. Figure 8 shows a discretization of the cross section (12 m x 6 m) between wells D1

and D3. There are a total number of 1225 pixels, each of which has dimensions of 0.25 m

x 0.25 m. Lithofacies, Fe(II), and Fe(III) concentrations are known at pixels along wells

D1, D2, and D3, but are unknown at pixels located between the wells. GPR attenuation

is considered to be known at all locations along the two-dimensional transect. Our goal

was to estimate all the unknown parameters given data available at the three wells and

along the cross section.

The estimation problem can be addressed in a stochastic framework, using a joint

conditional probability function. Let Li be the indicator random variable representing

lithofacies at pixel-i, 1 for sand and 0 for mud, i ∈ N , where N is the index set of

all pixels for which lithofacies and Fe(II) and Fe(III) concentrations are unknown. Let

Xi and Yi denote the unknown logarithmic Fe(II) and Fe(III) concentrations at pixel-i.

(For convenience, we shall refer to probability functions and probability density functions

as probability distributions in the later text.) Let ai denote the known logarithmic GPR

attenuation at pixel-i and lw denote the known lithofacies at the borehole pixels. Following

the convention suggested by Gelfand and Smith [1990], we use square brackets to denote

probability distributions. Consequently, the joint conditional distribution is given by:

[{Li}, {Xi}, {Yi}|{ai}, {lw}], i ∈ N (1)

where { } denotes a set that includes all possible values of the variable. Our objective

is to obtain the marginal distribution functions of lithofacies and logarithmic Fe(II) and

Fe(III) at each pixel from the joint conditional distribution.
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3.2. Local Conditional Distribution

We can simplify Equation 1 by considering only local dependence between logarithmic

GPR attenuation, lithofacies, and logarithmic Fe(II) and Fe(III), using data collected at

boreholes. We used the stepwise deletion technique [Chen et al., 2001] to obtain the best

regression models for logarithmic Fe(II) and Fe(III) estimation. We also fitted the log-

arithmic GPR attenuation as a linear function of the lithofacies indicator. Figure 9 is

a schematic diagram of the local conditional relationships among lithofacies, logarithmic

GPR attenuation, and logarithmic Fe(II) and Fe(III). We found that logarithmic Fe(II)

concentrations depend on the co-located lithofacies and logarithmic GPR attenuation,

and logarithmic Fe(III) concentrations depend on the co-located logarithmic Fe(II) con-

centrations and depth. Based on data analysis, we assumed each of the local conditional

distributions to be Gaussian, as follows:

[ai|Li] ∼ Normal(u1 + u2Li, τ1), (2)

[Xi|ai, Li] ∼ Normal(v1 + v2Li + v3ai + v4Liai, τ2), (3)

[Yi|Xi] ∼ Normal(r1 + r2Xi + r3di, τ3), (4)

where di is depth at pixel-i, u1, u2, v1, v2, v3, v4, r1, r2, and r3 are regression coefficients,

and τ1, τ2, and τ3 are the inverse variances of the conditional distributions of ai, Xi, and

Yi, respectively. The coefficients and inverse variances, obtained from data analysis, are

given in Table 1.

3.3. Joint Conditional Distribution

We can expand Equation 1 into several terms using Bayes’ theorem [Bernardo and

Smith, 1994] and subsequently simplify them using the local conditional distributions
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given in Equation 2–4. We also assume that the values of logarithmic GPR attenuation

and logarithmic Fe(II) and Fe(III) at each pixel are conditionally independent of the ones

at other pixels. By incorporating Equations 2–4 into Equation 1, we obtain the form of

the joint distribution as follows:

[{Li}, {Xi}, {Yi}|{ai}, {lw}] ∝ [{Li}, {lw}] ·
∏
i∈N
{[Yi|Xi][Xi|ai, Li][ai|Li]}, (5)

where “∝” represents “proportional to,” which ignores the normalizing constant at the

right side of Equation 5.

4. MCMC Sampling Method

This section outlines the method for obtaining estimates of Fe(II) and Fe(III) concen-

trations from the joint conditional distribution shown in Equation 5. Since conventional

analytical approaches are not feasible because of the large number of unknown variables

involved, we used instead an MCMC method, which has recently emerged as a powerful

approach for solving complex statistical problems involving a large number of dependent,

random variables. The MCMC method provides an efficient way to draw samples of un-

known variables from their joint distributions by running a constructed Markov chain

[Gilks et al., 1996]. Using those samples, we can obtain the mean, variance, predictive

intervals, and even probability function for each variable. Several applications of MCMC

methods to hydrogeology have been found, including those documented in Bosch [1999]

and Michalak and Kitanidis [2003].

We estimated Fe(II) and Fe(III) concentrations by following four basic steps:

1. Derive the conditional distribution for each unknown variable given all the data and

all other variables, which is referred to as the full conditional distribution of the variable.
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2. Sequentially draw samples from each of the conditional distributions.

3. Monitor convergence using the method developed by Gelman and Rubin [1992].

4. Make inferences about each variable using the generated samples.

The first three steps of the process are described below, and the final stage is given in

Section 5.

4.1. Deriving Full Conditional Distributions

Full conditional distributions play a prominent role in applications of MCMC methods

[Gilks et al., 1996]. They are typically not the same as the local conditional distribu-

tions that are conditioned to all the data and subsets of all other variables. However,

we can derive full conditional distributions by using the local conditional distributions.

Theoretically, the full conditional distribution of each variable is proportional to the joint

conditional distribution shown in Equation 5. Because MCMC methods require no in-

formation about normalizing constants, we can obtain the full conditional distribution of

each variable by omitting the terms at the right side of Equation 5 not directly related to

the variable.

4.1.1. Full conditional probability function of Yi

Let [Yi|·] denote the full conditional probability density function (PDF) of Yi given all

the data and other variables. After omitting all the terms in Equation 5 that are not

directly related to Yi, we obtain:

[Yi|·] ∝ [Yi|Xi]. (6)

This is the same as the local conditional pdf of Yi given Xi that was shown in Equation 4.
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4.1.2. Full conditional probability function of Xi

Similarly, by omitting all the terms in Equation 5 not directly related to Xi, we obtain

the full conditional distribution of Xi as follows:

[Xi|·] ∝ [Yi|Xi][Xi|ai, Li]. (7)

By substituting [Xi|ai, Li] and [Yi|Xi] with Equations 3 and 4, respectively, and after some

derivations (see Appendix A), we obtain:

[Xi|·] ∼ Normal(
τ2(v1 + v2Li + v3ai + v4Liai) + r2τ3(Yi − r1 − r3di)

τ2 + r2
2τ3

, τ2 + r2
2τ3) (8)

4.1.3. Full conditional probability function of Li

The MCMC method allows us to consider lithofacies as a spatially correlated random

variable. As a result, we can incorporate spatial correlation and borehole lithofacies

measurements into the estimation model. Similar to the derivation of [Yi|·] and [Xi|·], we

omit those terms in Equation 5 that are not directly related to Li and obtain:

[Li|·] ∝ [ai|Li] · [Xi|ai, Li] · [Li|{Lj, j 6= i}, {lw}], (9)

where {Lj, j 6= i} is the set including lithofacies at all pixels except pixel-i. It is convenient

and reasonable to assume that lithofacies Li depends only on the lithofacies at its adjacent

pixels [Chen and Rubin, 2003]. Let Set Ai be the index set of the adjacent pixels of pixel-i.

For those pixels not near boreholes, the conditional probability of Li does not depend on

borehole lithofacies measurements, and thus it is given by

[Li|{Lj, j 6= i}, {lw}] = [Li|Lj, j ∈ Ai] ∼ Bernoulli(p∗i ), (10)

where p∗i is the probability of lithofacies being sand given the lithofacies at its surrounding

pixels, obtained using indicator kriging [Rubin, 2003] (see Appendix B). Although for
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those pixels near boreholes, the conditional probability of Li also depends on the borehole

lithofacies measurements {lw}, we use a similar method to that as described in Appendix

B to obtain probability p∗i .

By substituting [ai|Li] and [Xi|ai, Li] with Equations 2 and 3, respectively, and af-

ter some simplifications (see Appendix C), we obtain the full conditional probability of

lithofacies as follows:

[Li|·] ∼ Bernoulli(
p∗i pi

1− p∗i + p∗i pi
) (11)

where

pi = exp{τ1u2(ai − u1 − 0.5u2) + τ2(v2 + v4ai)(Xi − v1 − 0.5v2 − v3ai − 0.5v4ai)}.

4.2. Sampling Full Conditional Distributions

The relationships shown in Equations 6, 8, and 11 represent the full conditional distribu-

tions of all variables of interest. The second step of the MCMC method is to sequentially

draw samples from those distributions. Two major algorithms can be used to draw sam-

ples from full conditional distributions: the Gibbs sampler [Geman and Geman, 1984] and

the Metropolis-Hastings method [Metropolis et al., 1953; Hastings , 1970]. Because the full

conditional distributions of Xi and Yi are Gaussian and the full conditional distribution

of Li is Bernoulli, which are easily sampled, we used the Gibbs sampler. The main steps

are given as follows:

1. For each i ∈ N , assign 0 or 1 to Li and refer to it as L
(0)
i , and assign real values to

Xi and Yi and refer to them as X
(0)
i and Y

(0)
i , respectively. Let k = 1.

2. Draw a sample from the Gaussian distribution [Yi|·] (Equation 4) given X
(k−1)
i and

refer to it as Y
(k)
i for i ∈ N .
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3. Draw a sample from the Gaussian distribution [Xi|·] (Equation 8) given Y
(k)
i and

L
(k−1)
i , and refer to it as X

(k)
i for i ∈ N .

4. Draw a sample from the Bernoulli distribution [Li|·] (Equation 11) given X
(k)
i ,

{L(k)
j , j = 1, 2, · · · , i− 1}, and {L(k−1)

j , j = i+ 1, · · · , n} and refer to it as L
(k)
i for i ∈ N .

5. Let k=k+1. If k > m, where m is the maximum number of iterations allowed, stop;

otherwise, go to step 2.

4.3. Monitoring Convergence of the Sampling

In the third step of the MCMC method, our goal is to determine the number of itera-

tions needed to obtain samples for inferences using the Gibbs sampler. Samples obtained

from the preceding algorithm may not be the samples of their marginal conditional distri-

butions. However, theoretically, after a sufficiently long run (for example, t iterations), re-

ferred to as burn-in [Gilks et al., 1996], samples {X(k)
i , Y

(k)
i , L

(k)
i : k = t+1, · · · ,m, i ∈ N}

obtained from the algorithm are approximately samples from their corresponding true

marginal conditional distributions [Gelfand and Smith, 1990]. In addition, as indicated

by the ergodic theorem [Gilks et al., 1996], the mean of any measurable function of those

variables obtained using the generated samples after discarding burn-in samples asymp-

totically converges to its true expectation as m→ +∞.

Many methods exist for monitoring convergence and finding the burn-in, such as the

Gelman and Rubin [1992], Geweke [1992], and Raftery and Lewis [1992] methods. The

most often used method is the Gelman and Rubin method. This method first entails

running several Markov chains with very different initial values, followed by calculation of

a criterion, referred to as the scale reduction score based on the multiple Markov chains

[Gelman and Rubin, 1992]. If the scale reduction score is less than 1.2, the Markov chain
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is considered to be converged; otherwise, more runs are needed. Using the preceding

convergence diagnostics method, we found that a burn-in of 400 realizations is enough

for all the unknown variables in this study. After the burn-in stage, we continued to run

the chain for another 2,000 runs and used all those samples to make inferences about the

unknown variables. The total computing time for running the 2,400 iterations is less than

ten minutes on a Pentium-III personal computer.

5. Results and Discussion

At the final stage of the MCMC method, we summarizes the results of Fe(II) and Fe(III)

estimation. We will first present the two-dimensional images of the mean logarithmic

Fe(II) and Fe(III) concentrations, obtained using the previous MCMC method. We will

then show the results of cross-validation analysis that demonstrated the effectiveness of the

developed statistical model. Finally, we will provide a short discussion of our methodology.

5.1. Fe(II) and Fe(III) Estimation

Using the lithofacies and Fe(II) and Fe(III) data at wells D1, D2, and D3, and the GPR

attenuation data along the cross sections from wells D1 to D3, we estimated extractable

Fe(II) and Fe(III) PDFs along the cross section between wells D1 and D3, using the method

developed in Section 4. Figure 3(b) shows the estimated mean logarithmic Fe(II) along

the two-dimensional transect. The figure provides detailed spatial information about

extractable Fe(II) on the cross section, which could not be accurately obtained from

borehole measurements only. The estimated spatial pattern of Fe(II) is similar to that

of GPR attenuation (Figure (3a)) because of the close correspondence of Fe(II) with

GPR attenuation as shown in Figure 6. Figure 3(d) shows the two-dimensional image of
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logarithmic Fe(III), which is much different from the GPR attenuation image. Comparison

of Figures 3(c) and 3(d) reveals that extractable Fe(III) has higher concentrations beneath

the mud layer than above the layer.

As the byproduct of the Fe(II) estimation, we obtained the probability of sand occurring

at each pixel on the cross section between wells D1 and D3 (Figure 3(c)). Lithofacies on

the cross section between wells D2 and D3 corresponds to GPR attenuation very well, with

sand having lower attenuation and mud having higher attenuation. However, lithofacies on

the lower part of the cross section between wells D1 and D2 does not correspond directly

to GPR attenuation, where GPR attenuation is high but the estimated lithofacies is

sand. One reason for the discrepancy is that lithofacies at each pixel were determined by

both lithofacies measurements at boreholes and GPR attenuation along the cross section.

Another reason is that our sand lithofacies classification included both pure sand and

muddy-sand components, and lithofacies at those pixels in reality may be muddy-sand

rather than pure sand, which would tend to have a higher GPR attenuation than pure

sand. Figure 3(c) also suggests that there is a mud layer in the middle of the cross section,

which passes through the three wells.

5.2. Cross-validation

Cross-validation is a model evaluation method, in which data are divided into two sub-

sets: one for testing (referred to as the testing set) and the other for training (referred

to as the training set). In this study, we split data available at wells D1, D2, and D3

into two subsets, and considered each individual well in turn as a testing well and the

other two wells as training wells. As done previously using the entire dataset, in this

exercise we derived cross correlations among various types of properties and spatial corre-
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lation of lithofacies from the training dataset only. We then estimated logarithmic Fe(II)

and Fe(III) concentrations at the testing locations, using data at the training wells and

GPR attenuation data along the transect from wells D1 to D3. By comparing the esti-

mated results with their corresponding true values at the testing well, we evaluated the

effectiveness of the developed model for Fe(II) and Fe(III) estimation.

Figure 10 compares the estimated mean logarithmic Fe(II) concentrations (solid black

lines), obtained during this cross-validation exercise, with their corresponding core mea-

surements (red circles with red solid lines) at testing wells D1, D2, and D3, respectively.

The dashed lines indicate the 95% predictive intervals. This figure suggests that the de-

veloped model is effective for logarithmic Fe(II) estimation. As shown in the figure, the

mean estimates of logarithmic Fe(II) at well D1 closely follow the true measurements of

logarithmic Fe(II), and the mean estimates of logarithmic Fe(II) at testing well D2 are

in close agreement with the true values. Although the estimated results of logarithmic

Fe(II) at testing well D3 do not match measured results as well as at other testing wells,

most measurements are still within the 95% predictive intervals of the estimated values.

Figure 11 presents the estimated mean logarithmic Fe(II) obtained without using GPR

attenuation data, to show the improvement offered by the GPR data. In this case, again,

the solid black lines represent the estimated values and the red circles with red solid

lines represent the true values at the testing wells. Although the three wells in the cross

section were separated by only 6 m, the estimated results without using GPR atten-

uation are much worse than those obtained with the use of GPR attenuation. This is

especially apparent at testing well D1. The mean estimates of Fe(II) are smooth, and
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the 95% predictive intervals are much larger than those of the model that includes GPR

attenuation.

Figure 12 shows the estimated mean logarithmic Fe(III) and their 95% predictive inter-

vals at each testing well, obtained during the cross-validation. Again, Fe(III) estimates at

each testing well were obtained using only data from the other two training wells, along

with the GPR attenuation, and a comparison of the estimates with the true data is made

to assess the validity of our developed model. We found that the measured logarithmic

Fe(III) values followed the trends of the estimated mean, and that most of the estimates

were within the 95% predictive intervals.

5.3. Discussion

We have developed an MCMC approach for estimating sediment Fe(II) and Fe(III) using

GPR tomographic data and lithofacies borehole measurements. Through cross validation,

we have shown that the developed approach is significant, given that currently no other

methods can sufficiently predict the spatial distribution of field-scale extractable Fe(II)

and Fe(III) at both a reasonable cost and in a minimally invasive manner. Although

the model cannot accurately estimate Fe(II) and Fe(III) point values at the “core-scale”,

it provided estimates at the spatial resolution of the tomographic data (0.25m x 0.25m

for this study), which was previously determined to be an effective characterization scale

for understanding field-scale chemical and bacteria transport [DeFlaun et al., 2001]. The

estimated spatial distributions of Fe(II) and Fe(III) may be used further for the inference of

microbial iron reduction potential [Murray et al., 2001] and for the estimation of bacterial

attachment or detachment parameters, which are needed as input for numerical predictions

of subsurface bacterial transport.
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Our goal in this study was to advance methodologies for linking sediment geochemical

properties to geophysical data, rather than to provide a mechanistic explanation for the

origin of the geochemical properties. Thus, it is not our intention to assess the extent to

which the solid-phase Fe(III) and Fe(II) distributions are controlled by ongoing microbial

reduction processes in the deposit, or by slow redistribution of iron during coupled trans-

port/reaction processes acting on materials whose original composition was determined

by short-term events taking place at the time of deposition.

The developed model was based on the data analysis results without considering field-

scale geochemical and biogeochemical processes, and thus was site specific. However, our

hypotheses that geochemical parameters and geophysical attributes can be linked through

their mutual dependence on physical properties should be applicable to estimation of other

geochemical parameters, such as organic matter and other metal oxyhydroxides, as well

as to other field sites.
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Appendix A: Derivation of [Xi|·]

By substituting Equations 3 and 4 into Equation 7 and omitting all terms that are not

directly related to Xi, we obtained [Xi|·] as follows:

[Xi|·] ∝ exp{−τ3

2
(Yi − r1 − r2Xi − r3di)

2} · (A1)

exp{−τ2

2
(Xi − v1 − v2Li − v3ai − v4Liai)

2}

= exp{−τ3

2
(r2Xi − Yi + r1 + r3di)

2} ·

exp{−τ2

2
(Xi − v1 − v2Li − v3ai − v4Liai)

2}

∝ exp{−τ2 + r2
2τ3

2
X2
i +

τ2(v1 + v2Li + v3ai + v4Liai)Xi + τ3r2(Yi − r1 − r3di)Xi}

∼ Normal(
τ2(v1 + v2Li + v3ai + v4Liai) + r2τ3(Yi − r1 − r3di)

τ2 + r2
2τ3

, τ2 + r2
2τ3),

where v1, v2, v3, v4, r1, r2, r3 are regression coefficients, τ2 and τ3 are the inverse variances,

and Yi, Li, di, and ai are the logarithmic Fe(III) concentration, lithofacies, depth, and

logarithmic GPR attenuation at pixel-i, respectively.

Appendix B: Indicator Kriging

Let set Ai be the index set of the adjacent pixels of pixel-i. Let ps be the unconditional

probability of observing sand at any pixel. The simple kriging mean µpi of observing sand

is given by:

µpi = ps +
∑
j∈Ai

λj(Lj − ps). (B1)

The coefficients λj (j ∈ Ai) are determined by:

∑
j∈Ai

λjCkj = Cki, k ∈ Ai, (B2)
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where Ckj and Cki are the lithofacies covariances between pixel-k and pixel-j and between

pixel-k and pixel-i, respectively. Both covariances are given by

Cij = σ2 exp

{
−
√

(
∆x

Ih
)2 +

∆z

Iv
)2

}
, (B3)

where σ2 is a constant, which does not affect estimation of the coefficients, and ∆x

and ∆z are the distances along horizontal and vertical directions between pixels i and

j. Iv and Ih are the integral lengths along vertical and horizontal directions, and were

derived from borehole data as explained in Section 2. To ensure µpi ∈ [0, 1], we let

p∗ = min{1,max{0, µpi}}.

Appendix C: Derivation of [Li|·]

By substituting Equations 2 and 3 and using the identity L2
i = Li, we can obtain the

full conditional probability of lithofacies as follows:

[Li|·] ∼ Bernoulli(pi) (C1)

where

pi ∝ [ai|Li][Xi|ai, Li][Li|Lj, j ∈ Ai] (C2)

∝ exp {−0.5τ1(ai − u1 − u2Li)
2 − 0.5τ2(Xi − v1 − v2Li − v3ai − v4Liai)

2}

{Lip∗ + (1− Li)(1− p∗)}.

∝ exp {τ1u2Li(ai − u1 − 0.5u2) + τ2(v2 + v4ai)Li(Xi − v1 − 0.5v2 − v3ai − 0.5v4ai)}

{Lip∗ + (1− Li)(1− p∗)}.

Normalization yields:

pi =
p∗p

1− p∗ + p∗p
. (C3)
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where

p = exp {τ1u2(ai − u1 − 0.5u2) + τ2(v2 + v4ai)(Xi − v1 − 0.5v2 − v3ai − 0.5v4ai)}.(C4)
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Figure 1. Locations of the South Oyster Bacterial Transport Site and our study area (D-site).

Wellbore data were collected at wells D1, D2, and D3, and GPR attenuation tomograms were

collected along transects D1-D2 and D2-D3.
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Figure 2. Normalized variogram of the coded lithofacies (sand=1 and mud=0) along the

vertical direction. The solid line is the fitted exponential model, γ(h) = 1 − exp(−h/0.5), with

an integral length of 0.5 m. The circles are the experimental variogram calculated from data at

wells D1, D2, and D3.
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Figure 3. (a) GPR attenuation; (b) Estimated mean natural logarithmic Fe(II); (c) Frequency

of sand (a frequency of 0.0 implies that lithofacies is mud, whereas a frequency of 1.0 implies

that lithofacies is sand); (d) Estimated mean natural logarithmic Fe(III).
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Figure 4. Boxplot of natural logarithmic GPR attenuation
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Figure 5. Histograms of natural logarithmic Fe(II) as a function of lithofacies
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Figure 6. Cross-plot of natural logarithmic Fe(II) versus natural logarithmic GPR attenuation,

where the circles represent sand samples and the solid triangles represent mud samples
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Figure 7. Histograms of natural logarithmic Fe(III).
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Figure 8. Discretization of the cross section between wells D1 and D3. The total number of

pixels is 25× 49 = 1225.
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Figure 9. Schematic diagram of the correlations among lithofacies, GPR attenuation, Fe(II),

Fe(III), and depth. The rectangles mean given data, and the ellipses mean unknown variables.
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Figure 10. Comparisons of the true logarithmic Fe(II) and its corresponding estimated values

obtained using GPR attenuation during the cross-validation exercise
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Figure 11. Comparisons of the true logarithmic Fe(II) and its corresponding estimated values

obtained without using GPR attenuation during the cross-validation exercise
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Figure 12. Comparisons of the true logarithmic Fe(III) and its corresponding estimated values

obtained using GPR attenuation during the cross-validation exercise
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Table 1. Coefficients of cross correlations among lithofacies, geochemical parameters, and

geophysical data corresponding to Equations 2–4

Models Coefficients
Logarithmic GPR attenuation u1 = −0.3332, u2 = −0.4110, τ1 = 15.58

vs. lithofacies R2 = 0.26

Logarithmic Fe(II) vs lithofacies v1 = 3.4128, v2 = 0.3085, v3 = 0.8796
and logarithmic GPR attenuation v4 = 3.7870, τ2 = 0.70, R2 = 0.60

Logarithmic Fe(III) vs depth r1 = −0.8813, r2 = −0.5910, r3 = 1.0026
and logarithmic Fe(II) τ3 = 0.45, R2 = 0.60
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